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Module 3 

Bending Moment and Shear Force 

       Objectives:  

Determine the shear force, bending moment and draw shear force and bending moment diagrams, describe     

behaviour of beams under lateral loads. Stresses induced in beams, bending equation derivation & Deflection 

behaviour of beams  

 
Learning Structure 

• 3.1 Types Of Beams 

• 3.2 Shear Force 

• 3.3 Bending Moment 

• 3.4 Shear Force Diagram And Bending Moment  

• 3.5 Relations Between Load, Shear And Moment 

• 3.6 Problems 

• 3.7 Pure Bending 

• 3.8 Effect Of Bending In Beams 

• 3.9 Assumptions Made In Simple Bending Theory 

• 3.10 Problems  

• 3.11 Deflection Of Beams 

• Outcomes 

• Further Reading 
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3.1 TYPES OF BEAMS 

a) Simple Beam 
 

 
A simple beam is supported by a hinged support at one end and a roller support at the other end. 

 
b) Cantilever beam 

 

 
A cantilever beam is supported at one end only by a fixed support. 

 
c) Overhanging beam. 

 
An overhanging beam is supported by a hinge and a roller support with either or both ends 
extending beyond the supports. 

 
Note: All the beams shown above are the statically determinate beams. 
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W1 
 

 

Rax-W1a 
 
 
 
 
 

 

Fig 2 : Shear Force Fig 3 : Bending Moment 
 

Consider a simply supported beam subjected to loads W1 and W2. Let RAand RB be the 
reactions at supports. To determine the internal forces at C pass a section at C. The effects of 
RA and W1 to the left of section are shown in Fig (b) and (c). In each case the effect of applied 
load has been transferred to the section by adding a pair of equal and opposite forces at that 
section. Thus at the section, moment M = (W1a-Rax) and shear force F = (RA-W1), exists. The 
moment M which tend to bends the beam is called bending moment and F which tends to shear 
the beam is called shear force. 

 
Thus the resultant effect of the forces at one side of the section reduces to a single force and a 
couple which are respectively the vertical shear and the bending moment at that section. 
Similarly, if the equilibrium of the right hand side portion is considered, the loading  is reduced 
to a vertical force and a couple acting in the opposite direction. Applying these forces to a free 
body diagram of a beam segment, the segments to the left and right of section are held in 
equilibrium by the shear and moment at section. 

 
Thus the shear force at any section can be obtained by considering the algebraic sum of all the 
vertical forces acting on any one side of the section 

 
Bending moment at any section can be obtained by considering the algebraic sum of all the 

moments of vertical forces acting on any one side of the section. 
 

3.2 Shear Force 
It is a single vertical force developed internally at any point on the beam to balance the 
external vertical forces and keep the point in equilibrium. It is therefore equal to algebraic sum 

of all external forces acting to either left or right of the section. 
 

3.3 Bending Moment 
It is a moment developed internally at each point in a beam that balances the external 
moments due to forces and keeps the point in equilibrium. It is the algebraic sum of moments 
to section of all forces either on left or on right of the section. 

 

Ra 
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3.3.1 Types of Bending Moment 
 

1) Sagging bending moment 
 

The top fibers are in compression and bottom fibers are in tension. 
 

2) Hogging bending moment 
 

The top fibers are in tension and bottom fibers are in compression. 
 
 

 
 

 
Sagging Bending Moment Hogging Bending Moment 

 
 

3.4 Shear Force Diagram and Bending Moment  

3.4.1 Diagram Shear Forces Diagram (SFD) 
The SFD is one which shows the variation of shear force from section to section along the 
length of the beam. Thus the ordinate of the diagram at any section gives the Shear Force at 
that section. 

 
3.4.2 Bending Moment Diagram (BMD) 
The BMD is one which shows the variation of Bending Moment from section to section along 
the length of the beam. The ordinate of the diagram at any section gives the Bending Moment 
at that section. 

 
3.4.3 Point of Contraflexure 
When there is an overhang portion, the beam is subjected to a combination of Sagging and 
Hogging moment. The point on the BMD where the nature of bending moment changes from 
hogging to sagging or sagging to hogging is known as point of contraflexure. Hence, at point 
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of contraflexure BM is zero. The point corresponding to point of contraflexure on the beam is 
called as point of inflection. 

 
3.5 RELATIONS BETWEEN LOAD, SHEAR AND MOMENT 

 
Consider a simply supported beam subjected to a Uniformly Distributed Load w/m. Let us 

assume that a portion PQRS of length is cut and taken out. Consider the equilibrium of 

this portion 

∑V=0 
 

F – (F+ F)-w x =0 x 
 
 
 

Limit x  0, then or F =        
   

Taking moments about section CD for equilibrium 

M-(M+ M)+F x-(w( x)2/2) =0   

Rate of change of Shear Force or slope of SFD at any point on the beam is equal to the 
intensity of load at that point. 

Properties of BMD and SFD 
1) when the load intensity in the region is zero, Shear Force remains constant and Bending 
Moment varies linearly. 
2) When there is Uniformly Distributed Load (UDL), Shear Force varies linearly and BM 
varies parabolically. 
3) When there is Uniformly Varying Load (UVL), Shear Force varies parabolically and 
Bending Moment varies cubically. 

 

 C  

B  
x 

F M w M+M 

F+F 
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3.6 Problems: 

 

1. A simply supported beam is carrying point loads, as shown in figure. Draw the SFD 
and BMD for the beam. 

 
 
 

 
4kN 10kN 8kN 

 
A C D E B 

 
1m 2m 1m 2m 

 
 

11 
7 

 
+ve SFD 

 
3 

 
-ve SFD 

11 
 

25 
 

22 
11 +ve BMD 

kN-m 

To draw  S.F.D.  and  B.M.D.  we need 
RA and RB. 
By taking moment of all the forces about 
point A, we get 
RB × 6 – (8 × 4) – (10 × 3) – (4 × 1) = 0 
RB = 11 kN 
From condition of static equilibrium: 
RA + 11 – 4 – 10 – 8 = 0 
RA = 11 kN 
Shear Force Calculations 

SF at A FA = + RA = + 11 kN 

SF left of C FC = + RA  = +11 kN SF 

right of C FC = + 11 – 4 = + 7 kN 

SF left of D FD = + 11 – 4 – 10 = 7 kN 

SF right of D FD = + 11 – 4 – 10 = – 3 kN SF 

left of E FE = + 11 – 4 – 10 = – 3 kN 

SF left of E FE =+ 11 – 4 – 10 – 8 = – 11 kN SF 

left of B FB = + 11 – 4 – 10 – 8 = – 11 kN 

Bending moment Calculations 

At x = 0, MA = 0 

At x = 1 m; MC = + RA.1 = 11 × 1 = 11 kN m At 

x = 3 m; MD = 11 × 3 – 4 (3 – 1) = 25 kN m 

At x= 4m 

ME = 11 × 4 – 4 (4 – 1) – 10 (4 – 3) = 22 kN m At 

X= 6m MB = 0 
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2. Draw the SF and BM diagram for the simply supported beam loaded as shown in 
fig. 

 
 

20kN/m 20kN 
30kN-m 

A C D E B 
 

1.5m 0.5m  1m 1m 
 
 

21.875 
 
 

+ve SFD 
 
 

1.09m 8.175 
-ve SFD 

28.175 
 

36.25 
11.96 

10.31 28.125 
6.25 

+ve BMD 
kN-m 

 To draw S.F.D. and B.M.D. we need RA and 
RB. 
By taking moment of all the forces about 
point A, we get 
RB × 4 – (20 × 3) – (20 × 1.52/2) – 30 = 0 
RB = 28.125 kN 
From condition of static equilibrium: 
RA + 28.125 – 30 – 20 = 0 
RA = 21.875 kN 
Shear Force Calculations 

SF at A FA = + RA = + 21.875 kN 

SF left of C  FC = +21.875 – 30 = -8.175 kN SF 

right of C  FC = +21.875 – 30 = -8.175 kN SF 

left of D  FD = +21.875 – 30 = -8.175 kN SF 

right of D  FD = +21.875 – 30 = -8.175 kN SF 

left of E  FE = +21.875 – 30 = -8.175 kN SF 

left of E FE = +21.875-30-20 = -28.125 kN SF 

left of B FB = +21.875-30-20 = -28.125 kN 

SF is zero, between A & C at x = 1.09m 

Bending moment Calculations 

At x = 0, MA = 0 

At x = 1.5 m; 

MC = 21.875 ×1.5 – 20 × 1.52/2= 10.31 kN m At x 

= 1.09 m; 

Mmax = 21.875 ×1.09–20 ×1.092/2=11.96 kN m 

At x = 2 m; 

MD = 21.875 ×2 – 20 × 1.5(0.75+0.5)=6.25 kN m 

At x = 2 m; 

MD = 21.875 ×2 – 20 × 1.5(0.75+0.5)+30 

= 36.25 kN m 

At x= 3m 

ME = 21.875 ×3 – 20 × 1.5(0.75+1.5)+30 

= 28.125 kN m 

At X= 4m MB = 0 
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3. A cantilever is shown in fig. Draw the BMD and SFD. What is the reaction at 
supports? 

 
 

2kN/m 20kN 
 

A C B 
 

2m 4m 
 

24 
20 

 
 

+ve SFD 
 
 
 
 
 

-ve BMD 
 
 
 

80 
 
 
 

124 

 To draw S.F.D. and B.M.D. we need RA and 
RB. 
By taking moment of all the forces about 
point A, we get 
RB × 4 – (20 × 3) – (20 × 1.52/2) – 30 = 0 
RB = 28.125 kN 
From condition of static equilibrium: 
RA + 28.125 – 30 – 20 = 0 
RA = 21.875 kN 
Shear Force Calculations 

SF at B FB = + 20 kN 

SF right of C FC = + 20 kN 

SF left of C FC = + 20 kN 

SF right of A FA = +20+ 2x 2 = 24 kN 

 
Since the moment is considered from right to left the 

anticlockwise  moments  are considered to be +ve and 

clockwise moments are considered to be -ve 

 
Bending moment Calculations 

At x = 0, MB = 0 

At x = 4 m; Mc = -20x 4 =- 80 kN-m At 

x = 6 m; 

MA = -(20 ×6+ 2 ×22/2)=124 kN m 
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Stresses in Beams 

3.7 Pure Bending 
 

 
A beam or a part of a beam is said to be under pure bending if it is subjected to only Bending 
Moment and no Shear Force. 

3.8 Effect of Bending in Beams 
 

The figure shows a beam subjected to sagging Bending Movement. The topmost layer  is under 
maximum compressive stress and bottom most layer is under maximum tensile stress.  In 
between there should be a layer, which is neither subjected to tension nor to compression. Such 
a layer is called “Neutral Layer”. The projection of Neutral Layer over the cross section of the 
beam is called “Neutral Axis”. 

 
 
 

Fig-1 
 

When the beam is subjected to sagging, all layers below the neutral layer will be under tension 
and all layers above neutral layer will be under compression. When the beam is subjected to 
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C D   

  

hogging, all layers above the neutral layer will be under tension and all the layers below 
neutral layer will be under compression and vice versa if it is hogging bending moment 

 
3.9 Assumptions made in simple bending theory 

 
• The material is isotropic and homogenous. 
• The material is perfectly elastic and obeys Hooke's Law i.e., the stresses are within the 

limit of proportionality. 
• Initially the beam is straight and stress free. 
• Beam is made up of number of layers and they undergo bending independently. 
• Bending takes place over an arc of a circle and the radius of curvature is very large 

when compared to the dimensions of the beam. 
• Normal plane sections before bending remain normal and plane even after bending. 
• Young's Modulus of Elasticity is same under tension a nd compression. 

 
3.9.1 Euler- Bernoulli bending Equation (Flexure Formula) 

 

 
where, 
M = Resisting moment developed inside the material against applied bending movement and 
is numerically equal to bending moment applied (Nmm) 
I = Moment of Inertia of cross section of beam about the Neutral Angle. (mm4) 
F = Direct Stress (Tensile or Compression) developed in any layer of the beam (N/mm2) 
Y = Distance of the layer from the neutral axis (mm) 
E = Young's Modulus of Elasticity of the material of the beam ( N/mm2 ) 
R = Radius of curvature of neutral layer (mm) 

 
Euler- Bernoulli’s Equation 

 
 
 

A B 
 
 
 

C D 
 

C1 D1 

A1 
G1 

B
 

E1 F1 
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Consider two section very close together (AB and CD). After bending the sections will be at 
A1 B1 and C1 D1 and are no longer parallel. AC will have extended to A1 C1 and B1 D1 will 
have compressed to B1D1. The line EF will be located such that it will not change in length. 
This surface is called neutral surface and its intersection with Z-Z is called the neutral axis. 

 
The development lines of A'B' and C'D' intersect at a point 0 at an angle of θ radians and the 

radius of E1F1 = R. 
 

Let y be the distance(E'G') of any layer H1G1 originally parallel to EF. 
 

Then H1G1/ E1F1 =(R+y)θ /R θ = (R+y)/R 
 

and the strain at layer H1G1= = (H1G1'- HG) / HG = (H1G1- HG) / EF 
 

= [(R+y)θ - R θ] /R θ 
 

  = y /R. 
 

The relation between stress and strain is σ= E. Therefore 
 

σ = E. = E. y /R 

σ / E = y / R 

Let us consider an elemental area ‘da ‘at a distance y, from the Neutral Axis. 
 

 
 
 
 
 
 
 
 
 
 
 
 

da y 
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Section Modulus(Z) 
 

 
Section modulus of a beam is the ratio of moment of inertia of the cross section of the bea m 
about the neutral axis to the distance of the farthest fiber from neutral axis. 

 

 
More the section modulus more will be the moment of resistive (or) moment carrying capacity 
of the beam. For the strongest beam, the section modulus must be maximum. 

 
3.10 Problems  

 

1. A steel bar 10 cm wide and 8 mm thick is subjected to bending mome nt. The 
radius of neutral surface is 100 cm. Determine maximum and minimum bending 
stress in the beam. 

 
Solution : Assume for steel bar E = 2 × 105 N/mm2 

ymax = 4mm 
R = 1000mm 
fmax = E.ymax/R = (2 × 105 × 4 )/1000 

 
We get maximum bending moment at lower most fiber, Because for a simply supported beam 
tensile stress (+ve value) is at lower most fiber, while compressive stress is at top most fiber 
(–ve value). 

 

Fmax = 800 N/mm2 
fmin occurs at a distance of – 4mm 
R = 1000mm 
fmin = E.ymin/R = (2 × 105 x – 4  
)/1000 fmin= –800 N/mm2
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2. A simply supported rectangular beam with symmetrical section 200mm in dept h 
has mome nt of inertia of 2.26 x 10-5 m4 about its neutral axis. Determine the longest 
span over which the beam would carry a uniformly distributed load of 4kN/m run 
such that the stress due to bending does not exceed 125 MN/m2. 

 
Solution: Given data: 

Depth d = 200mm = 0.2m 
I = Moment of inertia = 2.26 × 10-5 m4 
UDL = 4kN/m 
Bending stress s = 125 MN/m2 = 125 × 106 N/m2 
Span = ? 

Since we know that Maximum bending moment for a simply supported beam with UDL on its 
entire span is given by = WL2/8 

i.e; M = WL2/8 -------------(A) 
From bending equation M/I = f/ymax 

ymax = d/2 = 0.2/2 = 0.1m 
 

M = f.I/ymax = [(125 × 106) × (2.26 × 10-5)]/ 0.1 = 28250 Nm 
 

Substituting this value in equation ( A); we get 
28250 = (4 × 103)L2/8 

 
L = 7.52m 

 
3. Find the dime nsion of the strongest rectangular beam that can be cut out of a log 

of 25 mm diameter. 
 

Solution: b2 + d2 = 252 
d2 = 252 – b2 

we Know ; 

M = f (I/y) = f.Z 
M will be maximum when Z will be maximum 
Z = I/y = (bd3/12)/(d/2) = bd2/6 = b.(252 – b2)/6 

 

The value of Z maximum at dZ/db = 0; 
i.e.; d/db[252b/6 – b3/6] = 0 

252/6 – 3b2/6 = 0 
b2 = 252/3 

b = 14.43 mm 
d = 20.41 mm 

 
 
 
 
 

25mm 
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3.11 Deflection of Beams 

3.11.1 INTRODUCTION 

Under the action of external loads, the beam is subjected to stresses and deformation at various 
points along the length. The deformation is caused due to bending moment and shear force. 
Since the deformation caused due to shear force in shallow beams is very small, it is generally 
neglected. 

 
3.11.1.1 Elastic Line: 

It is a line which represents the deformed shape of the beam. Hence, it is the line along which 
the longitudinal axis of the beam bends. 

 
3.11.1.2 Deflection: 

Vertical displacement measured from original neutral surface (refer to earlier chapter) to the 

neutral surface of the deformed beam. 

 
3.11.1.3 Slope: 

Angle made by the tangent to the elastic curve with respect to horizontal 
 

The designers have to decide the dimensions of beam not only based on strength requirement 
but also based on considering deflection. In mechanical components excessive deflection causes 
mis-alignment and non performance of machine. In building it give rise to psychological unrest 
and sometimes cracks in roofing materials. Deflection calculations are required to impose 
consistency conditions in the analysis of indeterminate structures. 

 

 
 
 
 

3.11.1.4 Strength: 

It is a measure of the resistance offered by the beam to load 

 

θA θB 
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3.11.1.5 Stiffness: 
 

It is a measure at the resistance offered by the beam to deformation. Usually span / deflection 
is used to denote the stiffness. Greater the stiffness, smaller will be the deflection. The term 
(EI) called “flexural rigidity” and is used to denote the stiffness. 

 
3.11.2 Flexural Rigidity 

 
The product of Young's modulus and moment of inertia (EI) is used to denote the flexural 

rigidity. 
 
 

 

 
 

 
Let AB be the part of the beam which is bent into an arc of the circle. Let (x,y) be co- ordinates of A and 
(x + dx, y + dy) be the co-ordinates of B. Let the length of arc AB = ds. Let the tangents at A 
and B make angles q and ( q + d q ) with respect to x-axis. 

 
We have        

  
 

   
 

Differentiating both sides with respect of x; 
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Since dy/dx is small, its square is still small, neglecting (dy/dx)2 ; we have 
 
 

 
This is also known as Euler - Bernoulli's equation. 
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NOTE: 
 

• While deriving Y-axis is taken upwards 
• Curvature is concave towards the positive y axis. 
• This occurs for sagging BM, which is positive. 

 
Sign Convention 

 

Bending moment   Sagging + vc 
 

If Y is +ve - Deflection is upwards 
 Y is –ve - Deflection is downwards 

If  is +ve – Slope is Anticlockwise 
  is - ve – Slope is clockwise 

Methods of Calculating Deflection and Slope 
 

• Double Integration method 
• Macaulay's method 
• Strain energy method 
• Moment area method 

• Conjugate Beam method 
 

Each method has certain advantages and disadvantages. 
 

Relationship between Loading, S.F, BM, Slope and Deflection 
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3.11.3 Macaulay's Method 
 

1. Take the origin on the extreme left. 
2. Take a section in the last segment of the beam and calculate BM by considering left 
portion. 

3. Integrate (x-a) using the formula 
 

 
4. If the expression (x-a)n becomes negative on substituting the value of x, neglect the terms 
containing the factor (x-a)n 
5. If the beam carries UDL and if the section doesn't cuts the UDL, extend the UDL upto the 
section and impose a UDL in the opposite direction to counteract it. 
6. If a couple is acting, the BM equation is modified as; M = R A x + M (x-a)0. 

 
 

 
7. The constant C1 and C2 all determined using boundary conditions. 
a) S.S. Beam – Deflection is zero at supports 

b) Cantilever – Deflection and slope are zero at support. 
 

3.11.4 Problems: 
 

1. Determine the maximum deflection in a simply supported beam of length L carrying a 
concentrated load P at its midspan. 

 
P 

 
A B 

 
L 

 

L/2 
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…………………(1) 

 
 …………………(2) 

 

At x =0; y =0  C2 =0 
At x = L y =0 

 
 

 

 
Maximum deflection occurs at x = L/2 
Substituting the values of x and C1 in equation…. (2) 

 
 

 
 

 
The negative sign indicates that the deflection is below the undeformed neural axis 

 

 
3. Determine the maximum deflection in a simply supported beam of length L 

carrying a uniformly distributed load ‘w’ for the entire length of the beam. 

 
Solution : From the following fig 

 
 

 
………………..(1) 

 …………(2) 
 

At x =0 y=0 and C2 =0 

 

L 
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At x =L y =0 

 
Substituting the C1 values in equation 2 we get 

 

 
x = L/2, y is maximum due to symmetric loading 

 

 

 
 
 
          Outcomes:  

• Draw SFD and BMD for different beams including cantilever beams, simply supported beams 

and overhanging beams subjected to UDL, UVL, Point loads and couples 

• Determine dimensions, bending stress, shear stress and its distribution in beams of circular, 

rectangular, symmetrical I and T sections subjected to point loads and UDL 

• Determine slopes and deflections at various points on beams subjected to UDL, UVL, Point 

loads and couples 

 

Further Reading 

TEXT BOOKS: 

1. James M Gere, Barry J Goodno, Strength of Materials, Indian Edition, Cengage Learning, 2009. 

2. R Subramanian, Strength of Materials, Oxford, 2005. 

REFERENCE BOOKS: 

1. S S Rattan, Strength of Materials, Second Edition, McGraw Hill, 2011. 

2. Ferdinand Beer and Russell Johston, Mechanics of materials, Tata McGraw Hill, 2003. 
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Module 4 

TORSION OF SHAFTS 

Objectives: 

Explain the structural behavior of members subjected to torque, Calculate twist and stress induced 

in shafts subjected to bending and torsion. & Understand the concept of stability and derive  

crippling loads for columns  

 

Learning Structure 

• 4.1 Bending Moment 

• 4.2 ASSUMPTIONS IN TORSION THEORY 

• 4.3 Problems 

• 4.4 Columns and Struts: 

• 4.5 SLENDERNESS RATIO 

• 4.6 EFFECTIVE LENGTH OF COLUMN 

• .7 Euler’s Theorem 

• Outcomes  

• Further Reading 
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4.1 Bending Moment 

 
The moment applied in a vertical plane containing the longitudinal axis is resisted by 
longitudinal tensile and compressive stresses of varying intensities across the depth of bea m 
and are called as bending stresses. The moment applied is called Bending Moment. 

 
4.1.1 Torsional Moment 

 
The moment applied in a vertical plane perpendicular to the longitudinal axis i.e., in the plane of 
the cross section of the member, it causes twisting of layers which will be resisted by the shear 
stresses. The moment applied is called Torsion Moment or Torsional Moment. Torsion is useful 
form of transmitting power and its application is seen in screws and shafts. 

 
4.2 ASSUMPTIONS IN TORSION THEORY 

 
1. Material is homogenous and isotropic 
2. Plane section remain plane before and after twisting i.e., no warpage of planes. 
3. Twist along the shaft is uniform. 
4. Radii which are straight before twisting remain straight after twisting. 

5. Stresses are within the proportional limit. 
 

4.2.1 DERIVATION OF TORSIONAL EQUATION: 
 

Torsional Rigidity 
 

 
As product (CIP ) is increased deformation q reduces. This product gives the strength of the 
section to resist torque and is called Torsional rigidity. 
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Polar Modulus : (ZP) 
 
 

 
POWER TRANSMITTED BY SHAFT 

Power transmitted = Torsional moment x Angle through which the torsional moment rotates / 

unit tank 
 

If the shaft rotates with ‘N' rpm 
 

 
Note: 
N is in rpm and T is in N-m 

 
4.3 Problems: 

 
1. Find the maximum shear stress induced in a solid circular shaft of diameter 200 

mm when the shaft transmits 190 kW power at 200 rpm 
 

Given data: Power transmitted, P = 190 kW, Ip = 1.57 X 108 mm4 
   

speed N = 200 rpm and diameter of shaft = 200 mm. 
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Substituting all the values fs = 5.78N/mm2. 

2. A solid shaft of mild steel 200 mm in diameter is to be replaced by hollow shaft of 
allowable shear stress is 22% greater. If the  power to be transmitted is to be increased 
by 20% and the speed of rotation increased by 6%, determine the maximum internal 
diameter of the hollow shaft. The external diameter of the hollow shaft is to be 200 mm. 

Solution: Given that: 
Diameter of solid shaft d = 200 mm 
For hollow shaft diameter,  d0 = 200 mm 
Shear stress; tH = 1.22 ts 
Power transmitted; PH = 1.20 Ps 
Speed NH = 1.06 Ns 

As the power transmitted by hollow shaft 
PH = 1.20 Ps 

(2π.NH.TH)/60 = (2π.Ns.Ts)/60 × 1.20 
 

NH.TH = 1.20 Ns.Ts 
1.06 Ns.TH = 1.20 NsTs 
1.06/1.20 TH = Ts 
1.06/1.20 × π/16 tH [(d0)4 – (di)4/d0] = π/16 ts.[d]3 
1.06/1.20 × 1.22 ts [(200)4 – (di)4/200] = ts × [200]3 
di = 104 mm 

 
3. A solid shaft is subjected to a maximum torque of 1.5 MN.cm Estimate the diameter for 

the shaft, if the allowable shearing stress and the twist are limited to 1 kN/cm2 and 1o 
respectively for 200 cm length of shaft. Take G = 80 × 105 N/cm2 

Solution: Since we have 
T/Ip = fs/r = C.θ/L 
fs = T.Ip r = 1.5 × 106 / θ/32.d4 . d/2 
1 × 103 * 2π /1.5 × 106 * 32 = 1/d3 

d = 19.69 cm 
θ = T.L / C.Ip 

1.5 × 106 * 2π / 1.5 × 106 * 32 = 1 / d3 
d = 19.69 cm 
θ = T.L / C.Ip 
1.5 × 106 * 200 d/80 * 105 * π/32 d4 = π/180 
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0 

0 

0 i 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 

d3 = 1.5 × 106 * 180 * 200 * 32 / (80 * 105 * π * π) 
d = 27.97 cm 

4. A hollow circular shaft of 20 mm thickness transmits 300 kW power at 200 r.p.m. 
Determine the external diameter of the shaft if the shear strain due to torsion is not 
to exceed 0.00086. Take modulus of rigidity = 0.8 × 105 N/mm2. 

Solution:  Let   di = inner diameter of circular shaft 
d0 = outer diameter of circular shaft 

Then  d0 = di + 2t where t = thickness 
d0 = di + 2 * 20 
d0 = di + 40 

 

di = d0 – 40 
Since we have 
Power transmitted = 2π NT/60 

300,000 = 2π * 200 * T / 60 
→ T = 14323900 N mm 
Also, we have C = fs/y 
→ 0.8 * 105 = fs /0.00086 
→ fs = 68.8 N/mm2 
Now T = π/16. fs.(d 4 – d 4 / d ) 

14323900 = fs /16 * 68.8 (d0
4 – (d0 – 40)4 / d0) 

1060334.6 d0 = d 4 – (d0 – 40)4 
= (d 2 – d 2 + 80d – 1600)*(d 2 + d 2 – 80d + 1600) 

= (80d0 – 1600) (2d 2 – 80d0 + 1600) 

= 80 (d0 – 20) * 2 * (d0
2 – 40 d0 + 800) 

= 160 (d 3 – 40d 2 + 800 d – 20 d 2 + 800 d 
 
– 16000) 

→ 1060334.6 d0 / 160 = d0
3 – 60d0

2 + 1600d0 – 16000 
→ 6627 d0 = d 3 – 60d 2 + 1600 d – 1600 

0 0 0 
→ d 3 – 60d 2 + 1600d – 6627 d – 16000 = 0 

0 0 0 0 

→ d 3 – 60d 2 – 5027 d – 16000 = 0 

Using trial and error method to solve the above equation for d0, we get d0 = 107.5 mm.
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Elastic Stability of Columns 
 

4.4 Columns and Struts: 
 

Columns and struts are structural members subjected to compressive forces. Theses members 
are often subjected to axial forces, although they may be loaded eccentrically. The lengths of 
these members are large compared to their lateral dimensions. In general vertical compressive 
members called columns and inclined compressive members are called struts. 

 
4.4.1 CLASSIFICATION OF COLUMNS: 

 
Columns are generally classified in to three general types. The distinction between types of 
columns is not well, but a generally  accepted  measure  is  based  on  the  slenderness  ratio (le/r 

min). 

 
4.4.1 .1 Short Column : 

 
A short column essentially fails by crushing and not by buckling. A column is said to be short, 
if le /b  15  or le /rmin   50, where le = effective length, b = least lateral dimension and r min= 
minimum radius of gyration. 

 
4.4.1 .2 Long Column : 

 
 

A long column essentially fails by buckling and not by crushing. In long columns, the stress at 
failure is less than the yield stress. A column is said to be long le/b > 15 or le /rmin> 50. 

 
4.4.1 .3 Intermediate Column : 

 
 

An intermediate column is one which fails by a combination of crushing and buckling. 
 

4.4.1.4 Elastic Stability of Column 
 

Consider a long column subjected to an axial load P as shown in figure. The column deflects 
laterally when a small test load F is applied in lateral direction. If the axial load is small, the 
column regains its stable position when the test load is removed. At a certain value of the  axial 
load, the column fails to regain its stable position even after the removal of the test load. The 
column is then said to have failed by buckling and the corresponding axial load is called Critical 
Load or failure Load or Crippling Load 
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F 
 
 
 
 
 
 
 
 
 

4.5 SLENDERNESS RATIO 
 

Slenderness ratio is defined as the ratio of effective length (le ) of the column to the minimum 
radius of gyration (r min ) of the cross section. 

 

 
Since an axially loaded column tends to buckle about the axis of minimum moment of inertia 
(I min), the minimum radius of gyration is used to calculate slenderness ratio. 

 
 

Further,         
      , where A is the cross sectional area of column. 

  
 

4.6 EFFECTIVE LENGTH OF COLUMN (le) 
 

Effective length is the length of an imaginary column with both ends hinged and whose 
critical load is the same as the column with given end conditions. It should be noted that the 
material and geometric properties should be the same in the above columns. The effective 
length of a column depends on its end condition. Following are the effective lengths for some 
standard cases. 
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Both ends are 

hinged 

Both ends are fixed One end fixed and 

other end hinged 

One end fixed and 

other end is free 
 
 

 

 
 

 

 
 

 

 
 

 

 

Effective Length Le = 

L 

Effective Length 

L = 
 
 

e   

Effective Length 

L =  
 
 e 
   

Effective Length Le = 

2L 

 
 

4.7 Euler’s Theorem 
 

Theoretical analysis of the critical load for long columns was made by the great Swiss 
mathematician Leonard Euler (pronounced as Oiler). The assumptions made in the analysis 
are as follows: 

 
• The column is long and fails by buckling. 
• The column is axially loaded. 
• The column is perfectly straight and the cross sections are uniform (prismatic). 
• The column is initially free from stress. 

• The column is perfectly elastic, homogeneous and isotropic. 

 
4.7.1 Eulers Critical Load for Long Columns 

 
Case (1) Both ends hinged 

 
Consider a long column with both ends hinged subjected to critical load P as shown. 
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P 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 
 
 
 
 
 
 

P 
 
 
 

Consider a section at a distance x from the origin. Let y be the deflection of the column at this 
section. Bending moment in terms of load P and deflection y is given by 

 

 
We can also write that for beams/columns the bending moment is proportional to the 

curvature of the beam, which, for small deflection can be expressed as 
 

or            
       

…………….(2) 
    

 

where E is the Young's modulus and I is the moment of Inertia. 

Substituting eq.(1) in eq.(2) 

 

y 

L 
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This is a second order differential equation, which has a general solution form of 
 

 
where C1 and C2 are constants. The values of constants can be obtained by applying the 
boundary conditions: 

 
(i) y = 0 at x = 0. That is, the deflection of the column must be zero at each end since it is 
pinned at each end. Applying these conditions (putting these values into the eq. (3)) gives us 
the following results: For y to be zero at x =0, the value of C2 must be zero (since cos (0) = 1). 

 
(i) Substituting y = 0 at x = L in eq. (3) lead to the following. 

 
 

 
While for y to be zero at x = L, then either C1 must be zero (which leaves us with no equation 

at all, if C1 and C2 are both zero), or 
 

 
which results in the fact that 

 

 
 

 
Taking least significant value of n, i.e. n = 1 
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where le =L. 
 

Case (2) Both ends fixed 

 
Consider a long column with both ends fixed subjected to critical load P as shown. 

 

 
Consider a section at a distance x from the origin. Let y be the deflection of the column at this 
section. Bending moment in terms of load P, fixed end moment M 0 and deflection y is given 
by 

 

 
We can also write that for beams/columns the bending moment is proportional to the 

curvature of the beam, which, for small deflection can be expressed as 
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where E is the Young's modulus and I is the moment of Inertia. 

Substituting eq.(1) in eq.(2) 

 
This is a second order differential equation, which has a general solution form of 

 

 
where C1 and C2 are constants. The values of constants can be obtained by applying the 

boundary conditions: 
 

(i) y = 0 at x = 0. That is, the deflection of the column must be zero at near end since it is 
fixed. Applying this condition (putting these values into the eq. (3)) gives us the following 
result: 

 
 

 

ii) At X = 0
 
=0, that is, the slope of the column must be zero, since it is fixed. 

   
 

 
Substituting the boundary condition in eq. (4) 

 

 
Substituting the constants C1 and C2 in eq. (3) leads to the following 
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The variation of limiting stress ‘f' versus slenderness ratio       
 

     

 

in the above equation is 

shown below. 
 

f 
 
 
 
 
 
 
 
 
 
 
 

       
     

 

The above plot shows that the limiting stress ‘f' decreases as increases. In fact, when very 
small, limiting stress is is close to infinity, which is not rational. Limiting stress cannot be 
greater than the yield stress of the material. 

 
1. Eulers formula determines the critical load, not the working load. Suitable factor of safety 

(which is about 1.7 to 2.5) should be considered to obtain the allowable load. 

 
4.7.2 Rankine's critical Load 

 
 

 
Rankine Gordon Load is given by the following empirical formula, 

 
This relationship is assumed to be valid for short, medium and long columns. This relation can 

be used to find the load carrying capacity of a column subjected to crushing and/or buckling. 
 

From eq. (1)   
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Substituting PC and PE in the above relation 
 

 

 
 

 
 
 
 

Outcomes:  
 
 Determine the dimensions of shafts based on torsional strength, rigidity and flexibility and also 

elastic stability of columns using Rankin’s and Euler’s theory 

PO1, Ap 
Total H Further Reading 

TEXT BOOKS: 

1. James M Gere, Barry J Goodno, Strength of Materials, Indian Edition, Cengage Learning, 2009. 

2. R Subramanian, Strength of Materials, Oxford, 2005. 
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Module 5: Theories of Failure 
 

Objectives:  

Various types of theories of failure and its importance  

Learning Structure 

• 5.0 Introduction 

• 5.1 Stress-Strain relationships 

• 5.2 Types of Failure 

• 5.3 Use of factor of safety in design 

• 5.4 Theories of Failure 

• 5.5 Problems  

• Outcomes 

• Further reading 
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5. 0 Introduction: 
 

Failure indicate either  fracture  or  permanent  deformation  beyond  the 
operational range due to yielding of a member. In the process of designing a 
machine element or a structural member, precautions has to be taken to avoid 
failure under service conditions. 

 
When a member of a structure or a machine element is subjected to a system of 
complex stress system, prediction of mode of failure is necessary to involve in 
appropriate design methodology. Theories of failure or also known as failure 
criteria are developed to aid design. 

 
5.1  Stress-Strain relationships: 
Following Figure-1 represents stress-strain relationship for different type of 
materials. 

 
 

  

Ductile material e.g. low carbon steel Low ductility 

  
Brittle material Elastic – perfectly plastic material 

 

Figure-: Stress-Strain Relationship 

Bars of ductile materials subjected to tension  show a  linear  range  within  which the materials 
exhibit elastic behaviour whereas for brittle materials  yield  zone  cannot be identified. In general, 
various materials under similar test  conditions reveal different behaviour. The cause of failure of a 
ductile material need not be same as that of the brittle material. 
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5.2 Types of Failure: 

 

The two types of failure are, 
 

Yielding - This is  due  to  excessive  inelastic  deformation  rendering  the structural member or 
machine part unsuitable to perform  its  function.  This mostly occurs in ductile materials. 

 
Fracture - In this case, the member or component tears apart in two or more parts. This 
mostly occurs in brittle materials. 

 

5.3 Use of factor of safety in design: 
In designing a member to carry a given load without failure, usually a factor of safety (FS or N) is 
used. The purpose is  to  design the member in such a way that it can carry N times the actual 
working load without failure. Factor of safety is defined as Factor of Safety (FS) = Ultimate 
Stress/Allowable Stress. 

 
5.4 Theories of Failure: 

 
a) Maximum Principal Stress Theory (Rankine Theory) 
b) Maximum Principal Strain Theory (St. Venant’s theory) 
c) Maximum Shear Stress Theory (Tresca theory) 
d) Maximum Strain Energy Theory (Beltrami’s theory) 

 
5.4.1 Maximum Principal Stress Theory (Rankine theory) 

 
According to this, if one of the  principal stresses σ1 (maximum principal stress), σ2 (minimum 
principal stress) or σ3 exceeds the yield stress (σy), yielding would 



MECHANICS OF MATERIALS                                                                                                         17ME34 
 

 
  

  

DEPARTMENT OF MECHANICAL ENGINEERING, ATMECE, MYSURU 83 
 

 

occur. In a two dimensional loading  situation  for  a  ductile  material  where  
tensile and compressive yield stress are nearly of same magnitude 

 
σ1 = ± σy σ2 = ±σy 

 
Yield surface for the situation is, as shown in Figure-2 

 
 
 
 

Figure- 2: Yield surface corresponding 
to maximum principal stress theory 

 
Yielding occurs when the state of stress is at the boundary of the rectangle. 
Consider, for example, the state of stress of a thin walled pressure vessel.  Here 
σ1= 2σ2, σ1 being the  circumferential or hoop  stress  and  σ2 the axial stress. As 
the pressure in the vessel increases, the stress follows the dotted line. At a point 
(say) a, the stresses are still within the elastic limit but at b, σ1  reaches  σy 
although σ2 is still less than  σy. Yielding  will  then  begin  at  point b. This  theory 
of yielding has very poor agreement with experiment. However,  this  theory  is 
being used successfully for brittle materials. 

 

5.4.2 Maximum Principal Strain Theory (St. Venant’s Theory) 
 

According to this  theory, yielding will occur when the maximum principal 
strain  just  exceeds  the  strain  at  the  tensile  yield  point   in  either   simple 
tension  or compression.  If  ε1   and   ε2   are   maximum   and   minimum 
principal strains corresponding to σ1 and σ2, in the limiting case 

 
ε1 = (1/E)(σ1- νσ2) |σ1| ≥ |σ2| 
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ε2 = (1/E)(σ2- νσ1) |σ2| ≥ |σ1| 

This results in, 

E ε1 = σ1- νσ2 = ± σ0 
E ε2 = σ2- νσ1 = ± σ0 

 
The boundary of a yield surface in this case is shown in Figure – 3. 

 
 
 

Figure-3: Yield surface corresponding to 
maximum principal strain theory 

 
 

5.4.3 Maximum Shear Stress Theory (Tresca theory) 
 

According  to  this   theory,  yielding would occur when the maximum shear 
stress just exceeds the shear stress  at  the  tensile  yield  point.  At  the  tensile 
yield point σ2= σ3 = 0 and  thus  maximum  shear  stress is  σy/2.  This  gives  us 
six conditions for a three-dimensional stress situation: 

 
σ1- σ2 = ± σy 

σ2- σ3 = ± σy 

σ3- σ1 = ± σy 



MECHANICS OF MATERIALS                                                                                                         17ME34 
 

 
  

  

DEPARTMENT OF MECHANICAL ENGINEERING, ATMECE, MYSURU 85 
 

 

 
Figure – 4: Yield surface corresponding 
to maximum shear stress theory 

 

In a biaxial stress situation (Figure - 4) case, σ3 = 0 and this gives 
 
 

σ1 − σ2 = σy if σ1 > 0, σ2 < 0 

σ1 − σ2 = −σy if σ1 < 0, σ2 > 0 

σ2 = σy if σ2 > σ1 > 0 

σ1 = −σy if σ1 < σ2 < 0 

σ1 = −σy if σ1 > σ2 > 0 

σ2 = −σy if σ2 < σ1 < 0 

This criterion agrees well with experiment. 
 

In the case of pure shear, σ1 = - σ2 = k (say), σ3 = 0 
and this gives σ1- σ2 = 2k= σy 
This indicates that yield stress in pure shear is half the tensile yield  stress and 
this is also seen in the Mohr’s circle (Figure - 5) for pure shear. 

 

Figure – 5: Mohr’s circle for 
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pure shear 
 

5.4.4 Maximum strain energy theory (Beltrami’s theory) 
 

According to this  theory failure would occur when the total strain energy 
absorbed at a point per unit  volume exceeds the strain energy absorbed per 
unit volume at the tensile yield point. This may be expressed as, 

 
 

(1/2)(σ1 ε1 + σ2 ε2 + σ3 ε3) = (1/2) σy εy 
 

Substituting ε1, ε2, ε3 and εy in terms of the stresses we have 
 

σ 2 + σ 2 + σ 2 - 2 υ (σ  σ σ  σ σ σ ) = σ 2 
1 2 3 1 2 + 2 3 +    3   1 y 

(σ1/ σy)2 + (σ2/ σy)2 - 2ν(σ1 σ2/ σy
2) = 1 

The above equation  represents  an ellipse  and  the  yield  surface is  shown in  
F igure - 6 

 
 

 

Figure – 6: Yield surface corresponding 
to Maximum strain energy theory. 

 
It has been shown earlier that  only  distortion  energy  can cause yielding  but  in 
the above expression at sufficiently high hydrostatic pressure σ1 = σ2 = σ3 = σ 

(say), yielding may also occur.  From the  above we may write σ2(3 − 2ν) = σy
2 

and if ν  ~ 0.3,  at stress level lower than yield stress, yielding  would  occur. This 
is in contrast to the experimental as  well  as  analytical  conclusion  and  the 
theory is not appropriate. 
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5.4.5 Superposition of yield surfaces of different failure theories: 
A comparison among the different failure theories can be made by superposing  
the yield surfaces as  shown in figure – 7.  It  is  clear  that  an  immediate 
assessment of failure probability  can  be made  just by plotting any experimental  
in the combined yield surface. Failure of ductile materials is most accurately 
governed by the distortion energy theory where as the maximum principal strain 
theory is used for brittle materials. 

 
 

Figure – 7: Comparison of different failure theories 
 

5.5 Problems: 

Numerical-1:   A shaft  is  loaded by  a  torque  of 5  KN-m.  The material 
has a yield point of 350 MPa. Find the required diameter using Maximum 
shear stress theory. Take a factor of safety of 2.5. 

 
Torsional Shear Stress, τ= 16T/πd3, where d represents diameter of the shaft 

 
 

Maximum Shear Stress theory, √ 
 
 
 

Factor of Safety (FS) = Ultimate Stress/Allowable Stress 

Since σx = σy = 0, τmax = 25.46 X 103/d3 

Therefore 25.46 X 103/d3 = σy/(2*FS) = 350*106/(2*2.5) 

Hence, d = 71.3 mm 
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Numerical-2:   The  state  of stress  at a point for a material is  shown in   
the following figure Find the factor of safety using (a) Maximum  shear 
stress theory Take the tensile yield strength of the material as 400 MPa. 

 

From the Mohr’s circle shown below we determine, 

σ1 = 42.38MPa and 
σ2 = -127.38MPa 

 
from Maximum Shear Stress theory 

(σ1 - σ2)/2= σy/(2*FS) 

By substitution and calculation factor of safety FS = 2.356 
 

 
 

Numerical-3: A cantilever rod is loaded as shown in the following 
figure. If the tensile yield strength of the material is 300 MPa determine the 
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rod diameter using (a) Maximum principal  stress theory (b) Maximum 
shear stress theory 

 

 
At the outset it is necessary to identify the mostly stressed element.  Torsional 
shear stress as well as axial normal stress is  the  same  throughout  the  length of 
the rod but the bearing stress is largest at the welded end. Now among the four 
corner elements on the rod, the element A is mostly loaded as shown in 
following figure 

 
 

 
Shear stress due to bending VQ/It is also developed but this is  neglected  due to 
its small value compared to the other stresses. Substituting values of T, P, F and 
L, the elemental stresses may be shown as in following figure. 
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The principal stress for the case is determined by the following equation, 
 

By Maximum Principal Stress Theory, Setting, σ1 = σy we get d = 26.67mm 
 

By maximum shear stress theory by setting (σ1 – σ2)/2 = σy/2, we get, d = 
30.63mm 

 
Numerical-4:      The state of plane  stress shown occurs at a critical point  
of a steel machine component. As a result of several tensile tests it has been 
found that the tensile yield strength is σy=250MPa for the grade of steel 
used. Determine the factor of safety with respect to yield using maximum 
shearing stress criterion. 

 

Construction of the Mohr’s circle determines 
 

σavg = ½ (80-40)  = 20MPa and τm= (602+252)1/2 = 65MPa 
σa= 20+65 = 85 MPa and σb= 20-65 = -45 MPa 

 
The corresponding shearing stress at yield is τy= ½ σy = ½ (250) = 125MPa 

Factor of safety, FS = τm/ τy = 125/65 = 1.92 
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Summary: 
Different types of loading and  criterion  for  design  of structural 
members/machine parts subjected to static loading based on different failure 
theories have been discussed. Development of yield surface and optimization of 
design criterion for ductile and brittle materials were illustrated. 

 
 

Assignments: 
 

Assignment-1:   A Force F = 45,000N is  necessary to  rotate the shaft shown    
in the following figure at uniform speed. The crank shaft is made of ductile steel 
whose elastic limit is 207,000 kPa, both in tension and compression. With E = 
207 X 106 kPa and ν = 0.25,  determine  the  diameter  of  the  shaft  using 
maximum shear stress theory, using factor of safety = 2. Consider a point on the 
periphery at section A for analysis (Answer, d = 10.4 cm) 

Assignment-2:    Following  figure shows  three elements  a,  b  and  c  subjected 
to different states of stress. Which one of these  three,  do  you think  will  yield 
first according to i) maximum stress theory, ii) maximum strain theory, and iii) 
maximum shear stress theory? Assume Poisson’s ratio ν = 0.25 [Answer: i) b, 
ii) a, and iii) c] 
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Assignment-3: Determine  the  diameter  of  a  ductile  steel  bar  if  the  tensile 
load F is 35,000N and the torsional moment T is 1800N.m. Use factor of safety 
= 1.5. E = 207*106kPa and σyp = 207,000kPa. Use the maximum shear stress 
theory. (Answer: d = 4.1cm) 

 

 

Assignment-4: At a pint in a steel  member,  the  state  of  stress  shown  in 
Figure. The tensile elastic limit is 413.7kPa. If the shearing stress at a point is 
206.85kPa, when yielding starts, what is the tensile stress σ at the point 
according to maximum shearing stress theory? (Answer: Zero) 

 
Outcomes:  
Can determine various types theories of failure and its importance  
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